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IS CARBON DIOXIDE AN ORE-FORMING FLUID UNDER

SHALLOW EARTH CONDITIONS?
By R. M. Garrels and D. H. Richter
ABSTRACT

review of some of the physical chemical properties of COp and

system COx-Hz0 indicates that under some shallow earth condi-

tions COz can exist as a separate phase with a density approximafely

that o
solubi

silica

I water. The effect of dissolved neutral or acid salts on the
1ity of COs in Ho0 is negligible. Carbonates, oxides, and

tes, through reactions with a CQOg-saturated water phase, will

eventually cause the disappearance of a COz phase. The prevalence

of COz in the earth's crust is attested by its abundance in natural

gases
8

and fluid inclusions in minerals.

ome of the characteristics of uranium ores of the Colorado

Plateau are compatible with the assumption that deposition was from

a flul

d 002 pha.se’

INTRODUCTION

During the course of some speculations regarding the origin of

the Sﬂndstonemtype uranium deposits, we were led to consider the

possib
transp
dioxid

of car

ility that a non-agueous phase might be the agent of metal
ort and deposition. Because of the prevalence'of carbon
le in earth materials of all kinds, a review of the properties

‘hon dioxide under shallow earth conditions seemed warranted.

-‘Although we do not have the temerity to advocate carbon dioxide as




the or

were s

e-forming medium in such deposits, the results of the review

o opposed to our preconceived ideas concerning the nature of

this gas that we are impelled to present them for general consumption,

A

mong the questions that occurred to us at the start of the in-

vestigation were:

I

Do water and carbon dioxide exist as separate phases in rocks?

f so, what is the concentration of water in the carbon dioxide

phase, and vice versa? What is the density of carbon dioxide

u

b

T
figure

impose

nder shallow earth conditions? What is known about the solvent

roperties of carbon dioxide?

PART I - THE SOLID PHASE

P-V-T relations for COo

he pressure-volume-temperature relations for COz are shown in
1 (Michels and others, 1935, 193%5a; and Kennedy, 1954). -Super-

d on the diagram are lines sghowing high, "normal”, and low

thermﬁ

gradie

1 gradients under hydrostatic pressure conditions, and the same

nts for lithostatic conditions. As an example, let us briefly

examine some of the properties of COz along a "normal" thermal

gradie
P~-V-T
Ppheres

volume

nt (lOC/lOO ft.) under lithostatic pressures as shown on the
diagram. At a temperature of 110°C and pressure of 800 atmos-
s, corresponding to a depth of 10,000 feet, COz has a specifie

of 1,08, or in other words, a density of 0.93. At decreasing

temperatures and pressures, the COp volume slowly increases, concomi=-

tant with a slow decrease in density, until near surface conditions

are re

ached. Here at 15°C and 50 atmospheres (750 feet below the
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Figure 1l.--P-V-T diagram for COs with superimposed high, "normal”,
and low thermal gradients under lithostatic and hydrostatic
pressures.’ Specific volumes (sloping solid lines) are expressed
in cc/g., Greatest density is reached undera high pressure-low
temperature gradient (left hand dashed line), least density
under hydrostatic pressure and a high temperature gradient
(right hand dashed line).




surface), equivalent to the intersection of the earth gradient and
COp vapor pressure curve, COo rapidly expands filling a volume eight
times that of its original size. With further decrease in teﬁperature
and pressure COz continues to expand rapidly until equilibrium is
established with atmospheric conditions. The lithostatic pressure
gradient must represent roughly the maxiénm that can exist for
appreciable time intervals. Gas or fluld pressures, built up from
below, are greater than the hydrostaticbpressure by the amount neces-
sary'to overcome the frictional resistance of the enclosing rocks.

In unfractured and slightly permeable rocks the pressure must exceed
the rock load if the fluid is to move at an appreciable rate. That
such conditions do exist is shown by measured pressures in drill holes;
in fact, Pinfold (1954%, p. 1660) reports bottom hole pressures in
excesg of the lithostatic load. The temperature gradients chosen are
well within the observed range (Lindgren, 1919, p. 80-84, and Van
Orstrand, 1934). The lithostatic pressure is computed on the assump-

tion ‘that the average rock density is 2.7,
CO02-Ho0 solubility relations

The solubility of COo in water has been determined by Wiebe and
Gaddy (1939, 1940); the solubility of Hp0 in gaseous COz ghould be
roughly proportional to the partial pressure of Ho0., On éhis basis
the weight ratio of water to COs, for a given pair of Pw?’values, is
taken as proportional to the ratio of the vapor pressure'of water to

the total pressure on the system (PCO2 + PHgO)° For actual calcula-

tion of the mole percent water in the gaseous COp, the Gas lLaw was

used.



Some gquestion may arise as to the validity of the assumption
that COz at high density acts ‘as a gaseous solvent, or that water
vapor itself under such high total pressure obeys the Gas lLaw., How-
ever, determinations of the solubility of water in liguid COp (Stone,
1943) guggest that serious error in the order of megnitude of the
calculated solubilities is not likely. At 22.5°C, and under the
vapor pressure of COp (60 atmospheres), the solubility of water in
liquid COz is only 0.954 weight percent. Furthermore, the data at
temperatures up to 22,50 indicate that the solubility of water in
liquid COz increases with temperature at a decreasing rate under the
equilibrium vapor pressure, Because earth gradients have linear in=-
crease in pressure, whereas the vapor pressure curve of COp is ex-
ponential, it appears very likely that no great error is involved in
the calculated solubility.

Figure 2 shows the composition of the water phase and the carbon
dioxide phase for a mixture of carbon dioxide and water, transported
down & thermal gradient of 1°C per 100 feet under lithostatic condi-
tions. The low mutual solubility is apparent.

Figure 3 shows iso-solubility curves for COz in water on a P-T
graph., The nearly constant solubility at low temperatures and pres-
sures along all the gradients chosen, as well as the marked increase
at the higher ranges, are noteworthy features. In other words, a
saturated solution of COz in water, if it moves upward from depth,
will separate a nearly pure fluid COp phase. This deduced behavior
is substantiated by observations on certain three-phase fluid inclu-
sions in meny minerals. The three phases are two liquids and a gas

at room temperature. If the inclusions are heated one of the liquid
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phages disappears at 31°C, the critical temperature of carbon dioxide.
The remaining gas and liguid phase commonly persist td tenperatures
about 20030; then the gas phase disappears.and the inclusions fill
with liquid (Cgmeron and others, 1953). On cooling, the sequence of
events is reversed. The disappearance of the vapor phase, on heating,
is by no means entirely attributable to the expansion of the liquid
phase but must also indicate a high solubility of COz in Hp0 at
temperatures above 200°C and high pressures. Further evidence of the
existence of a nearly pure dense gaseous COp phase under earth condi-
tions is shown by numerocus fluid inclusions that exhibit only a gas
phase abgve the critical temperature of COp and a liquid phase with

a small gas bubble below the critical temperature. The absence of
appreciable water in the CQp phase 1is shown by the disappearance of
liguid COz at the critieal temperature for pure COz. Appreciable water

in solution would raise the critical point.
Pensity relations

To illustrate density changes it is instructive to take a mixture
of one mole of COp and one mole of water from the earth's surface down
various earth gradients, At the surface the volume discrepancy of the
two phases is huge; 18 cc. for the liquid water and 23,100 ce. for the
gaseous COs, but the descent into the earthAchanges the picture con-
siderably.

In figure 4 the changes are shown diagrammatically. COz shrinks
as pressure is applied and reaches a density approaching that of water
at depths of a few thousand feet, depending upon the specific earth
gradient, Thus under natural conditions it is probable that at rela-

tively shallow depths a fluid COp phase may exist with a density equal
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to or slightly greater than that of water! In fact, in moderate to
high latitudes, where the near-surface temperature is low, liquid COz
may form.,

In figure 5 the density of CO2 as a function of depth is showm
graphically, to emphasize the high density that is reached at relative-
ly shallow depths.

COz, under most earth conditions, has a density greater than that
of liquid COz at room temperature. There is no change in solvent
properties of a liquid phase as it changes to a gas, if there is no
change in density, so dense gaseous COp can be expected to behave like
the liquid (cf Hannay and Hogarth, 1879; Ingerson, 1934, pp. 457-458;
Smith, 1943, p, 34). The fact that in many environments, it is not
only denser, but hotter than the ligquid, indicates that it probably
is considerably more effective as a solvent. The density of ligquid
CO- at 31°C, under its vapor pressure of T3 atmospheres, is 0.47,
whereas at 100° and 1000 atmospheres, the density of the fluid is about

1.0.

Effect of dissolved material on

€Oz solubility in water

So far the discussion has been concerned only with the system
C0o-H20. The gquestion arises as to the effect of other dissolved
materials on the COp solubility in water. Most dissolved salts reduce
gas solubility, if no chemical reaction between the dissolved gas and
the solutes occurs (Mellor, 1925, p. 53). Such reaction by dissolved

€02 with meutral or acid salts is not to be expected; a long list of
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determinations of COs solﬁb;%ities in a variety of such salt solutions
(Seidell, 1940, pp. 225-230) shows remarkably uniform behavior and a
relativeiy small ealt effect...

Pissolved COp will react with dissolved basic salts, such as
sodium carbonate, bﬁt the solubility is probably most affected by the
reaction of the COgx~-Ho0 system with rock minerals susceptible to acid
attack, If a "bubble" of dense COz were injected into a water=-saturated
sandstone that had a calcite or an iron oxide cement, COz would dissolve
in the water and then react with the iron oxide and calecite. As a

result of the reactions, the bubble would eventually disappear. The

reactions would be:

0Oz + Hp0 —>HCO0s > HY + HCOs

+
N
CaCOs
ca™ + HCOZ
60z + 6HpO—> 6HpCOs — 6H' + GHCO:
+
Feo0s
oFe™ 4+ 3HR0
The same type of reaction would take place with silicate minerals
but at a much slower rate,
In general, then, in a low temperature system of COz and Hx0, a
separate COz phase will exist even if the weight percent COp is small;
but, 1f the system is placed in contact with rocks containing cérboaates

or oxides, the COz phase will gradually disappear as it dissolves into

the water to replace that used up by reaction.
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A separate €0z fluid phase would thus not be expected to persist
indefinitely if it were moving through water-saturated rocks, unless
they were pure quartz sandstones, or perhaps certain acid resistant
clays. Certainly it would tend to disappear in limestones, or from
oxide or calcium carbonate cemented sandstones, siltstones, or shales.

The rate of disappearance would be a complex variable, depending
on the rate of reaction of the solids and the rate of diffusion of COg
into the water phase. The second variable would in turn depend on
whether or not the COp was moving relative to the water phase.

The persistence of gaseous COz as a separate phase in nature is
shown by its presence in the exhalations of many volcanoes and hot
springs, as well as by its occurrence as a major constituent in some
natural gases from stratigraphic or structural traps (table 1). Con-~-
cerning its ubiquitous nature in fluid inclusions in minerals Lindgren
(1919, Po 95) eloquently states: "The presence of liquid carbon dioxide
in cavities in minerals of igneous rocks is proof of its occurrence in
the molten magma consolidated in depth. Every eruption brings new
evidence of exhalations from magmas congealing near the surface; and
almost every volcanic district of recently closed ignecus aectivity
testifies to the persistence of this gas in escaping from the cooling

lavas below.”

SUMMARY

In summary, COgz can exist as a separate phase under shallow earth
conditions. At depths below 1,000 feet, under a "normal” temperature
gradient and a lithostatic load, its density is equal to that of

liquid COp at the eritical point. Under high pressure gradients and
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Table l.-~The COs content of some earth gases.

Locality Percent COs

References

Volcances and fumaroles

Iceland, bl
average of 5 analyses

West Indies, 48
gverage of 3 analyses

Kilauea, Hawaii, 57
average of 5 analyses

Hot springs

Lassen National Park, 93
Calif., average of 26
analyses

Yellowstone National Park, ] 85
Wyo., average of 40O
analyses

0il and gas fields

Tampico, Mexico 10.7 - 979
Walden, Colo. 92 -
Jaritas Dome, N. Mex. - 67.2

San Rafael swell, Utah 91.2

Clarke (1924, p. 262)
after Bunsen

Clarke (1924, p. 269)
after Moissan

Day and Shepherd (1913,
p. 588)

Day and Allen (1925,
p. 131-133)

Allen and Day (1935,
p. 86) )

Muir (1935, p. 1000-
1003)

Dobbin (1935, p. 1065)
Dobbin (19%5, p. 1065)

Ley (1935, p. 112k)
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low temperature gradients its density approximastes that of water at
depths between one and two miles. -Bense fluid COp probably has sol-
vent properties more nearly comparasble to a liquid than to those
generally attributed to a gas. Unfortunately, little is known of
the solvent properties of liquid COz. In most rocks a separate COs
phase probably would disappear over a long periocd of time as a result
of reaction of the COg-saturated water phase with rock minerals

susceptible to acid attack.
-PART I1 - THE GASEOUS PHASE
€Oz and uranium deposits

The relatively common occurrence of fairly pure gaseous COs in
nature, plus the fact that its density, even under shallow earth con-
ditions, is greater than that of liquid COs at room temperature, leads
naturally to the possibility that CQ, may play an important role in
the transportation and deposition of other compounds. Present knowl-
edge of the solvent properties of dense gaseous CQz, or even of liquid
COp; 1s very limited. and certainly merits extensive investigation.

To show the part that dense COs; might play as a transporting
agept9 it is intriguing to consider to what extent it would fit the
characteristics required of the fluid that deposited the uranium ores
of the Colorado Plateau. Rather than attempt any coherent reconstruc-
tion of the details of the processes of deposition, we prefer to
assemble a somewhat disconnected group of arguments, explanations, and
generalizations, which we hope will prove provocative, and may lead

others to more detailed examination of some of the aspects considered.
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First, the best recomstrﬁgtien of the conditions of deposition
of the ores indicates that €0z would have an appropriate demsity.
According to Stieff and Stern (1952, p. 708), the ores were deposited
in early Tertiary or late Cretaceous time., At the end of Cretaceous,
the ore-bearing Triassic or Jurassic beds were buried by about 10,000
feet of sediment, so that, on the basis of a "normal” geothermal
gradient, and a hydrostatic load, the temperature would have been
about ll@QC, and the pressure about 300 atmospheres. The density of
COz, under these conditions, is about 0.6, roughly that of liquid
€0z at room temperature under its equilibrium vapor pressure. If it
is considered that the geothermal gradient would probably be a little
lower in a basin of sinking sediments, and that the pressure on ascend-
ing COz, held back by the frictional resistance of the nearly impermeable
shales of the Chinle, Brushy Basin, and.Manéos formations, might well
be lithostatic, the density of COz would be about that of the pore
waters of the mineralized sediments. The relation of the ores to the
containing beds suggests strongly that the density of the ore fluid
was equal to or greater than the pore waters; in the Shinsrump con=-
glomerate, ore is characteristically in chammels at the base of the
formation, whereas in the Salt Wash sandstones of the Morrison formation,
it commonly "floats"” in the middle of an apparently homogeneous sandstone
layer. Elsewhere in the Salt Wash, the ore may "hang" against a shale
split for long distances, snd then abruptly cut down across bedding
planes. In gtill other places it hugs the base of a sandy iayer. ‘
The "bleached" shales that so often underlie or overlie ore bodies
might be the result of the slow solution of COz in the pore waters of

the rock, with concomitant removal of hematite cement and solution and
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recrystallization of calcite., The effect of COz dissolving in pore
waters might also account for the occurrence of ore in light-colored
sandstones, often with disseminated pyrite. The COz dissolved in

the pore waters would react with the iron oxide of originally red
sediments, and the resulting ferric iron would be reduced and precipi-
tated as pyrite by a small amount of HpS in the €0z, or could even be
adsorbed by, or taken up in the structure of clay minerals (Gruner,
1953, p. 28-34),

The rhythmic precipitation that is so common in the ores, and
has led some workers (Fischer, 1942, p. 389) to postulate a ground-
water origin, might be rhythmic precipitation at the shrinking bound-
ary of the dissolving COz phase.

The very sharp, sometimes undulating margins of many ores, sug-
gest deposition at a phase boundary, perhaps between pore waters and
the dense gaseous COz.

The fact that the ores represent additions of an unusual sulte
of elements, which are deposited interstitially in the rocks, suggests
transportation by an unusual solvent, which has very little effect,
except addition, on the rocks within the ore itself, Because the added
elements resemble the trace element suite in petroleum, it has been
postulated by some as the ore fluid (Erickson and others, 1953). Liquid
Cozlhas been characterized as a non-polar, or weakly polar solvent
(Mellor, p. 58) and conceivably might be a solvent for a similar suite
of metals, as well as for organic materials. Furthermore, recent
laboratory experiments indicate that the solubility of certailn crude
oils in liguid €Oz is great enough to warrant its use in secondary oil

recovery. (Johnson and others, 1952).
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The natural gases of the Colorado Plateau are well known as tend-
ing to run very high in COs (table 1). In reading an account of the
distribution of COz~rich gas wells in the United States, one is struck
by the number of occurrences in southwestern Colorado, northwestern
New Mexico, and southeastern Utah. By coincidence, perhaps, a dry ice
plant was planned in Grand Junction to utilize COp-rich gas from the
Morrison formation,

In summary, we have felt for some time that there is a "gimmick"
in the vexing problem of the origiun of the ores of the Colorado Plateau.
From the little we know, COp is just sufficiently common and unusuai
to lead us to the suspicion that it will bear a good hard look as a

candidate for ore depositing honors.
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